

Hieff NGS[®] OnePot Pro DNA Library Prep Kit V4 一步法 DNA 酶切建库试剂盒 V4

12972ES

产品使用说明书

Ver. CN20240826

目录

^卒 品简介	1
产品信息	1
组分信息	
诸存条件	
主意事项	
吏用说明	4

产品简介

Hieff NGS® OnePot Pro DNA Library Prep Kit V4 是一款可用于 Illumina®和 MGI®高通量测序平台的新一代酶切法建库试剂 盒。与传统的建库法比较,本品采用高质量的片段化酶,摆脱了繁琐的超声过程。将片段化模块与末端修复模块合二为一,极大的降低了建库的时间和成本。可应用于 1ng-1 µg 常规动植物基因组、微生物基因组等样本,不同物种间,酶切片段较为均一,物种间差异小。在单管内实现 DNA 的片段化、末端修复和 A 尾添加反应。同时,本试剂盒可搭配 Illumina®或 MGI®的接头和 Primer,用于 Illumina®和 MGI®高通量测序平台测序。

- ♣ 适用 1ng 1μg 的基因组 DNA、全长 cDNA 等样本
- ♣ 高质量片段化酶,可随机切割双链 DNA,酶切片段偏好性低
- ♣ 片段化、末端修复/加A一步完成
- → 强扩增效率的高保真酶,显著提高文库质量及产量
- ▲ 适用于多种物种样本
- → 严格的批次性能与稳定性质控

产品信息

货号	12972ES08 / 12972ES24 / 12972ES96
规格	8 T / 24 T / 96 T

组分信息

组分编号		组分名称	12972ES08	12972ES24	12972ES96
12972-A	0	Smearase® Buffer 4.0	80 μL	240 μL	960 μL
12972-B	0	Smearase [®] Enzyme 4.0	80 μL	240 μL	960 μL
12972-C		Ligation Enhancer 4.0	240 μL	720 μL	3×960 μL
12972-D		Rapid DNA Ligase 4.0	80 μL	240 μL	2×480 μL
12972-E	0	2×Ultima HF Amplification Mix	200 μL	600 μL	3×800 μL

注:若实验时,使用推荐的短接头,则无需 Primer mix。若实验时,选择长接头,则 Primer mix 为实验必须试剂,但是该成分不包含在本试剂盒,需要额外配置。本试剂盒组分兼容 Illumina 和 MGI 双平台,但需要额外配置专属于 Illumina 或者 MGI 的 primer mix,(Cat# 12190 Primer Mix for Illumina 以及 Cat# 12191 Primer Mix for MGI 。

储存条件

-25~-15°C保存,有效期1年。

注意事项

一、关于操作

- 1. 为了您的安全和健康,请穿实验服并戴一次性手套操作。
- 2. 请于使用前将试剂盒各组分置于室温解冻。解冻后上下颠倒数次充分混匀,短暂离心后置于冰上待用。
- 3. 配制各步骤反应液时推荐使用移液器吹打混匀或轻轻振荡,剧烈振荡可能会造成文库产出下降。
- 4. 为避免样品交叉污染,推荐使用带滤芯的枪头,吸取不同样品时请更换枪头。
- 5. 推荐在带热盖的 PCR 仪中进行各步骤反应,使用前应预热 PCR 仪至反应温度附近。

www.yeasen.com Page 1 of 9

6. PCR 产物因操作不当极容易产生气溶胶污染,进而影响实验结果准确性。推荐将 PCR 反应体系配制区和 PCR 产物纯化检测区进行强制性的物理隔离;使用专用的移液器等设备;并定时对各实验区域进行清洁(使用 0.5%次氯酸钠或 10%漂白剂进行擦拭清理),以保证实验环境的洁净度。

7. 本产品仅作科研用途!

二、关于 DNA 片段化

- 1. 本试剂盒兼容范围为 1ng~1μg Input DNA。应尽可能使用 A260/A280 = 1.8-2.0 的高质量 Input DNA。
- 2. 若 Input DNA 中引入高浓度金属离子螯合剂或其他盐,可能会影响后续实验,建议将 DNA 稀释在 ddH2O 中进行片段化。
- 3. 对于常规的高质量基因组 DNA,酶切时间参考表 5,本试剂盒片段化偏好性低,耐受各种 GC 含量的模板。以上为推荐时间,需客户在自己的实验体系中进行微调,以达到最佳效果。
- 4. 为保证优质精确的片段化效果,片段化反应配制过程请于冰上操作。

三、关于接头连接 (Adapter Ligation)

- 1. 针对 Illumina 测序平台, Yeasen 可提供如下接头:
- a. Hieff NGS[®] Complete Adapter Kit for Illumina[®],Set 1~Set 2 (Cat#13519~Cat#13520),试剂盒中的接头浓度为 15 μM;
- b. Hieff NGS[®] 384 CDI Primer for Illumina[®](Cat#12412~Cat#12413),试剂盒中的接头浓度为 15 μM;
- c. Hieff NGS^{*} Stubby UDI Primer Kit for Illumina^{*}, Set1~Set4(板式)(Cat#12327~Cat#12330),试剂盒中的接头浓度为15 μM;
- d. Hieff NGS[®] Dual UMI UDI Adapter Kit for Illumina[®],Set1~Set2 (Cat#13370~Cat#13371),试剂盒中的接头浓度为15 μM。
- e. Hieff NGS[®] Full UDI Adapter Kit for Illumina[®] Set1~Set4(板式)(Cat#12333~Cat#12336),试剂盒中的接头浓度为 10 μM;
- 2.针对 MGI[®] 高通量测序平台,Yeasen 可提供如下接头:
- a. Hieff NGS® Complete Adapter Kit for MGI®, Set 1~Set 3(Cat#13360~Cat#13362),试剂盒中的接头浓度为 10 μM;
- b. Hieff NGS[°] Unique Dual Barcode Adapter Kit for MGI[°],Set 1~Set 4(板式)(Cat#13350~ Cat#13353),试剂盒中的接头浓度为 10 μM;
- c. Hieff NGS^{*} Dual UMI UDB Adapter Kit for MGI^{*},Set 1~Set 2 (Cat#13367~Cat#13368)双端 UMI UDB 短接头,试剂盒中的接头浓度为 10 μM。
- 3. Adapter 的质量和使用浓度直接影响连接效率及文库产量。Adapter 用量过高可能会产生较多 Adapter Dimer;用量较低可能会影响连接效率及文库产量;使用 Adapter 时根据 Input DNA 量用 TE Buffer 进行相应稀释。
- 表 1 和表 2 分别列举了使用本试剂盒的不同 Input DNA 量推荐的针对 Illumina[®] or MGI[®]测序平台常规和 UMI Adapter 的稀 释方法。

表 1 1ng~1 μg Input DNA 针对 Illumina®测序平台推荐常规和 UMI Adapter 使用浓度

Input DNA	常规 Adapter 稀释倍数	Adapter 浓度
1 ng	30 倍稀释	0.5 μΜ
10 ng	7.5 倍稀释	2 μΜ
100 ng	3 倍稀释	5 μΜ
1000 ng	1.5 倍稀释	10 μΜ

表 2 1ng~1µg Input DNA 针对 MGI®测序平台推荐常规和 UMI Adapter 使用浓度

www.yeasen.com Page 2 of 9

Input DNA	常规 Adapter 稀释倍数	Adapter 浓度
1 ng	20 倍稀释	0.5 μΜ
10 ng	5 倍稀释	2 μΜ
100 ng	2 倍稀释	5 μΜ
1000 ng	不稀释	10 μΜ

四、关于磁珠纯化与分选 (Bead-based Clean Up and Size Selection)

- 1. DNA 片段长度分选步骤可选择在接头连接后或文库扩增后进行长度分选。
- 2. 当 Input DNA 质量≥50 ng,您可选择在接头连接后分选。
- 3. Ligation Enhancer 中包含高浓度的 PEG,会对双轮分选产生显著影响。因此,如在接头连接后进行长度分选,必须先进行纯化步骤,再进行双轮分选步骤;如在文库扩增后进行长度分选,可直接进行双轮磁珠分选步骤。
- 4. 磁珠使用前应先平衡至室温,否则会导致得率下降、分选效果不佳。
- 5. 磁珠每次使用前都应充分振荡混匀或使用移液器上下吹打充分混匀。
- 6. 转移上清时,请勿吸取磁珠,即使微量残留都将影响后续文库质量。
- 7. 磁珠漂洗使用的 80%乙醇应现用现配,否则将影响回收效率。
- 8. 进行长度分选时,初始样品体积应尽量≥100 μL,不足时请用超纯水补齐。以防因样品体积太小导致移液误差增大。
- 9. 产物洗脱前应将磁珠置于室温干燥。干燥不充分容易造成无水乙醇残留影响后续反应;过分干燥又会导致磁珠开裂进而降低纯化得率。通常情况下,室温干燥 3~5 min 足以让磁珠充分干燥。
- 10. DNA 纯化或长度分选产物如需保存,可使用 TE Buffer 洗脱,产物可于 4° C可保存 1° 2 周, -20° C可保存 1 个月。

五、关于文库扩增(Library Amplification)

文库扩增步骤需要严格控制扩增循环数。循环数不足,将导致文库产量低;循环数过多,又将导致文库偏好性增加、重复度增加、嵌合产物增加、扩增突变积累等多种不良后果。表 3 列举了使用本试剂盒,获得 1μg 文库的推荐循环数。

 Input DNA
 1 μg 文库产量推荐 PCR 循环数

 1000 ng
 2~4

 500 ng
 2~4

 250 ng
 4~6

 100 ng
 5~7

 50 ng
 7~9

 1 ng
 12~14

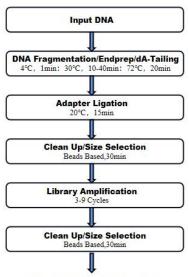
表 3 $1 \text{ ng} \sim 1 \mu \text{g Input DNA}$ 获得 $1 \mu \text{g}$ 产物扩增循环数推荐表

【注】如果使用了不完整的接头,需要扩增 1~3 个循环,形成完整的接头。建库过程中若进行片段分选,扩增时请参照较高循环数扩增。

六、关于文库质检 (Library Quality Analysis)

- 1. 通常情况下,构建好的文库可通过长度分布检测和浓度检测来进行质量评价。
- 2. 文库浓度检测可使用:基于双链 DNA 荧光染料的方法,如 Qubit^{*}、PicoGreen^{*}等;基于 qPCR 绝对定量的方法。
- 3. 文库浓度检测不可使用:基于光谱检测的方法,如 NanoDrop®等。
- 4. 推荐使用 qPCR 方法进行文库浓度检测: Qubit[®]、PicoGreen[®]等基于双链 DNA 荧光染料的浓度测定方法时,无法有效区分单端连接 Adapter 的产物、两端均未连接 Adapter 的产物以及其他不完整双链结构产物; qPCR 绝对定量基于 PCR 扩增原理,仅定量样品中两端 Adapter 完整的文库(即可测序的文库),可排除单端或双端都不连接 Adapter 的不可测序文库干扰。
- 5. 文库长度分布检测,可通过 Agilent Bioanalyzer 2100 等基于毛细管电泳或微控流原理的设备进行

www.yeasen.com Page 3 of 9



使用说明

一、自备材料

- 1. 纯化磁珠: Cat#12601,Hieff NGS[®] DNA Selection Beads 或 Cat#A63880,AMPure XP Beads 或其他等效产品。
- 2. DNA 质控: Agilent Technologies 2100 Bioanalyzer 或其他等效产品。
- 3. DNA Adapter:推荐使用短接头 Hieff NGS[®] 384 CDI Primer for Illumina (Cat#12412-12413 或其他等效产品)或 Complete Adapter for MGI[®](Cat#13360-13362 或其他等效产品)。若需要其他长接头或者 UMI 接头等,联系翌圣获取推荐详情。
- 4. DNA Primer Mix: Cat#12190,DNA Library Prep Primer Mix for Illumina[®] 或 Cat#12191,DNA Library Prep Primer Mix for MGI[®]。
- 5. 其他材料:无水乙醇、灭菌超纯水、TE Buffer (10 mM Tris-HCl, pH 8.0-8.5+1 mM EDTA)、低吸附 EP 管、PCR 管、磁力架、PCR 仪等。

二、操作流程

Target Capture or Sequencing

图 1 OnePot Pro DNA 建库试剂盒操作流程

三、操作步骤

- 3.1 DNA 片段化/末端修复/dA 尾添加 (DNA Fragmentation/End Repair/dA-Tailing) 该步骤将基因组 DNA 片段化,同时进行末端修复及 dA 尾添加。
- 1. 将表 4 中各试剂解冻后,颠倒混匀,置于冰上备用。
- 2. 于冰上配制表 4 反应体系。

表 4 DNA 片段化/末端修复/dA 尾添加 PCR 反应体系

名称	体积 (μL)
Input DNA	x
Smearase® Buffer 4.0	10
Smearase [®] Enzyme 4.0	10
ddH ₂ O	Up to 60

www.yeasen.com Page 4 of 9

- 3. 使用移液器轻轻吹打或低速振荡混匀,并短暂离心将反应液离心至管底。
- 4. 将上述 PCR 管置于 PCR 仪,设置表 5 所示反应程序,进行 DNA 片段化,末端修复及 dA 尾添加反应。

表 5 DNA 片段化/末端修复/dA 尾添加 PCR 反应程序

温度	时间
热盖 105℃	On
4°C	1 min*
30°C	10~40 min**
72°C	20 min
4°C	Hold

【注】:*DNA 片段化过程为有效控制片段化效果,避免过度酶切,反应程序可预先设置 4℃,待模块温度降至 4℃时,将 PCR 管放入 PCR 仪。

**对于完整的基因组 DNA,酶切时间参考表 6。

表 6 常规基因组 DNA 片段化条件选择表

时间 插 入片段大小(bp) 温 度	10min	15min	20min	25min	30min	40min
酶切温度 30℃	700	300~500	200~400	150~300	150~250	150~200
酶切温度 35℃	500~600	200~300	150~250	150~200	150	130

不同打断条件下片段大小分布图可见"实施例"部分的图 2 和图 3.

3.2 接头连接 (Adapter Ligation)

该步骤将 3.1 步骤的产物末端,连接 Illumina 或 MGI 接头。

- 1. 根据 Input DNA 量按第三部分推荐的接头使用浓度,稀释 Adapter 至合适浓度。
- 2. 将表7中各试剂解冻后颠倒混匀,置于冰上备用。
- 3. 于 3.1 步骤 PCR 管中配制表 7 所示反应体系。

表 7 Adapter Ligation PCR 体系

名称	体积 (μL)
dA-tailed DNA(3.1 步骤产物)	60
Ligation Enhancer 4.0	30*
Rapid DNA Ligase 4.0	10
PE Adapter***	5**
ddH ₂ O	Up to 110

【注】: *Ligation Enhancer 比较粘稠,使用前请上下颠倒、振荡,充分混匀并瞬时离心后使用。

- **本公司接头浓度与常规商业化试剂盒一致,Illumina[®]平台皆为 15 μM,MGI[®]平台皆为 10 μM;具体的接头使用量可以参照注意事项三表 1-2,根据投入量对接头进行稀释,使接头添加体积固定为 5 μL。
- ***PE Adapter 为短接头中不含 index 序列的通用接头,不同的货号中通用接头的名称不同。若使用长接头,则 PE Adapter 直接替换成含 Index 的长接头。
- 4. 使用移液器轻轻吹打或振荡混匀,并短暂离心将反应液收集至管底。
- 5. 将 PCR 管置于 PCR 仪中,设置表 8 所示反应程序,进行接头连接反应。

www.yeasen.com Page 5 of 9

表 8 Adapter Ligation PCR 反应程序

温度	时间
热盖	Off
20°C	15 min
4°C	Hold

【注】:当 Input DNA 量较低,实验效果不理想时,可尝试将连接时间延长一倍。

3.3 连接产物磁珠纯化 (Post Ligation Clean Up)

3.3.1 纯化操作步骤

该步骤使用磁珠对 3.2 步骤的产物进行纯化。纯化可除去未连接的 Adapter 或 Adapter Dimer 等无效产物。

- 1. 准备工作:将 Hieff NGS^{*} DNA Selection Beads 磁珠由冰箱中取出,室温平衡至少 30 min。配制 80%乙醇。
- 2. 涡旋振荡或充分颠倒磁珠以保证充分混匀。
- 3. 将 Adapter Ligation 产物充分离心,然后吸取 88 μL Hieff NGS[®] DNA Selection Beads (0.8×,Beads:DNA=0.8:1)至 Adapter Ligation 产物中,涡旋振荡或使用移液器轻轻吹打至充分混匀,室温孵育 5 min。
- 4. 将 PCR 管短暂离心并置于磁力架中分离磁珠和液体,待溶液澄清后(约 $5 \, min$),小心移除上清;待移除大部分上清后可短暂离心再次置于磁力架中,换用 $10 \, \mu L$ 的枪头彻底吸净残留液体。
- 5. 保持 PCR 管始终置于磁力架中,加入 200 μL 新鲜配制的 80%乙醇漂洗磁珠,室温孵育 30 sec 后,小心移除上清。
- 6. 重复步骤 5,总计漂洗两次,最后一次漂洗结束,要彻底吸净乙醇。
- 7. 保持 PCR 管始终置于磁力架中,开盖空气干燥磁珠至刚刚出现龟裂(不超过 5 min)。
- 8. 将 PCR 管从磁力架中取出:
- 1)若产物无需分选则直接加入 21 $\,\mu$ L ddH $_2$ O,涡旋振荡或使用移液器轻轻吹打至充分混匀,室温静置 5 min。置于磁力架上,待溶液澄清后,小心移取 20 $\,\mu$ L 上清至新的 PCR 管中,切勿触碰磁珠。
- 2)若产物需进行双轮分选,则加入 102μ L ddH_2O ,涡旋振荡或使用移液器轻轻吹打至充分混匀,室温静置 5 min。置于磁力架上,待溶液澄清后,小心移取 100 μ L 上清至新的 PCR 管中,切勿触碰磁珠。

3.3.2 双轮分选操作步骤

- 1. 准备工作:将 Hieff NGS® DNA Selection Beads 磁珠由冰箱中取出,室温平衡至少 30 min。配制 80%乙醇。
- 2. 涡旋振荡或充分颠倒磁珠以保证充分混匀。
- 3.根据 DNA 片段长度要求,参考表 9 向上述 100ul 纯化后的连接产物上清中加入第一轮分选磁珠,涡旋振荡或充分颠倒磁珠混匀。

表 9 磁珠文库分选推荐比例

DNA 文库插入片段大小	150-250 bp	200-300 bp	300-400 bp	400-500 bp	500-600 bp
DNA 文库大小	250-350 bp	350-450 bp	450-500 bp	500-550 bp	550-650 bp
第一轮体积比 (Beads:DNA)	0.80×	0.70×	0.60×	0.55×	0.50×
第二轮体积比 (Beads:DNA)	0.20×	0.20×	0.20×	0.15×	0.15×

【注】:表中"×"表示上步骤连接产物体积。如文库插入片段长度为 250 bp,连接产物体积为 100 μ L,则第一轮分选磁珠使用体积为 0.70×100 μ L=70 μ L;第二轮分选磁珠使用体积为 0.20×100 μ L=20 μ L;表中所推荐比例是针对于 Adapter Ligated Insert DNA (Post Ligation),如果用户在接头连接前进行分选,请采用 Hieff NGS® DNA Selection Beads (Cat#12601)说明书中推荐的比例。

- 4. 室温孵育 5 min。
- 5. 将 PCR 管短暂离心并置于磁力架中,待溶液澄清后(约 5 min),小心转移上清到干净的离心管中。

www.yeasen.com Page 6 of 9

- 6. 参考表 9 向上清中加入第二轮分选磁珠。
- 7. 涡旋混匀或移液器吹打 10 次混匀,室温静置 5 min。
- 8. 将 PCR 管短暂离心并置于磁力架中,待溶液澄清后(约 5 min),小心移除上清。
- 9. 保持 PCR 管始终处于磁力架中,加入 200 μL 新鲜配制的 80%乙醇漂洗磁珠,室温孵育 30 sec,小心移除上清。
- 10. 重复步骤 9, 总计漂洗两次, 最后一次漂洗结束, 要彻底吸净乙醇。
- 11. 保持 PCR 管始终处于磁力架中,开盖干燥磁珠至刚刚出现龟裂(约 5 min)。
- 12. 将 PCR 管从磁力架中取出,加入适量 21 μL ddH₂O,涡旋振荡或使用移液器轻轻吹打充分混匀,室温静置 5 min。
- 13. 将 PCR 管短暂离心并置于磁力架中分离磁珠和液体。待溶液澄清后(约 5 min),小心转移 20 μL 上清至干净的管中。
- 3.4 文库扩增 (Library Amplification)

该步骤将对纯化或长度分选后的接头连接产物进行 PCR 扩增富集。

- 1. 将表 10 中试剂解冻后颠倒混匀,置于冰上备用。
- 2. 于无菌 PCR 管中配制表 10 所示反应体系。

表 10 PCR 扩增反应体系

名称	体积 (μL)
Adapter Ligated DNA(3.3 步骤产物)	20
2×Ultima HF Amplification Mix	25
Primer Mix**	5*

【注】: *Primer Mix 针对不同测序平台,选用与平台对应的 Adapter 和 Primer Mix。

**如果使用的是 Illumina 完整长接头,请使用 DNA Library Prep Primer Mix for Illumina(Cat#12190)试剂盒中的 Primer Mix 进行扩增;如果使用的是 MGI 单端长接头,请使用 DNA Library Prep Primer Mix for MGI(Cat#12191)试剂盒中的 Primer Mix 进行扩增;如果使用了两个平台不完整的接头,请参照各自接头试剂盒说明书,使用其中配备的 Index Primer 进行扩增。

- 3. 使用移液器轻轻吹打或振荡混匀,并短暂离心将反应液收集至管底。
- 4. 将 PCR 管置于 PCR 仪中,设置表 11 所示反应程序,进行 PCR 扩增。

表 11 PCR 扩增反应程序

温度	时间	循环数
98°C	45 sec	1
98°C	15 sec	
60°C	30 sec	参照注意事项中表 3
72°C	30 sec	
72°C	1 min	1
4°C	Hold	-

3.5 扩增产物磁珠纯化或分选 (Post Amplification Clean Up/Size Selection)

扩增后纯化步骤同 3.3.1 纯化操作步骤。使用 Hieff NGS° DNA Selection Beads $(1.0 \times , Beads: DNA=1:1)$ 纯化文库扩增产物。 如需分选,操作方法同 3.3.2 双轮分选步骤。

3.6 文库质量控制(Library Quality Analysis)

通常情况下,构建好的文库可通过浓度检测和长度分布检测来进行质量评价,具体请参见注意事项六。

www.yeasen.com Page 7 of 9

四、实验实例

不同片段化时间得到的插入片段大小

以 250ng 常规 gDNA 为模板,使用本酶切试剂盒进行片段化,片段化条件为 30° C/ 35° C分别酶切 10/15/20/25/30/40 min,片段化产物 2.0x 磁珠纯化, $15~\mu$ L ddH $_2$ O 洗脱,Qubit 测定浓度后,回收的插入片段分布如下图所示。

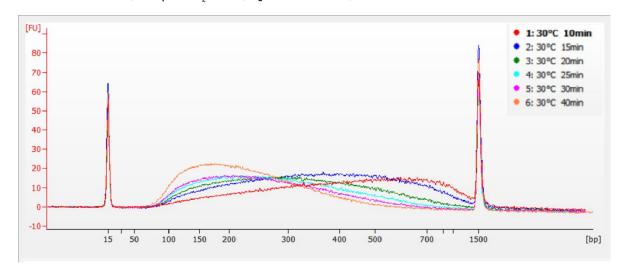


图 2 30℃不同片段化时间峰图

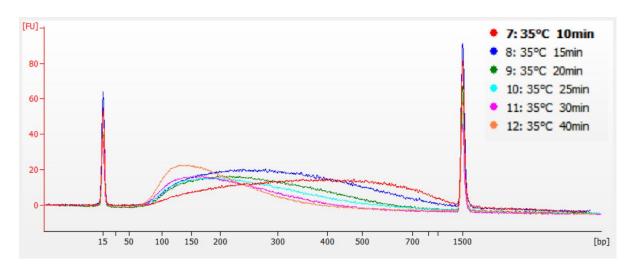
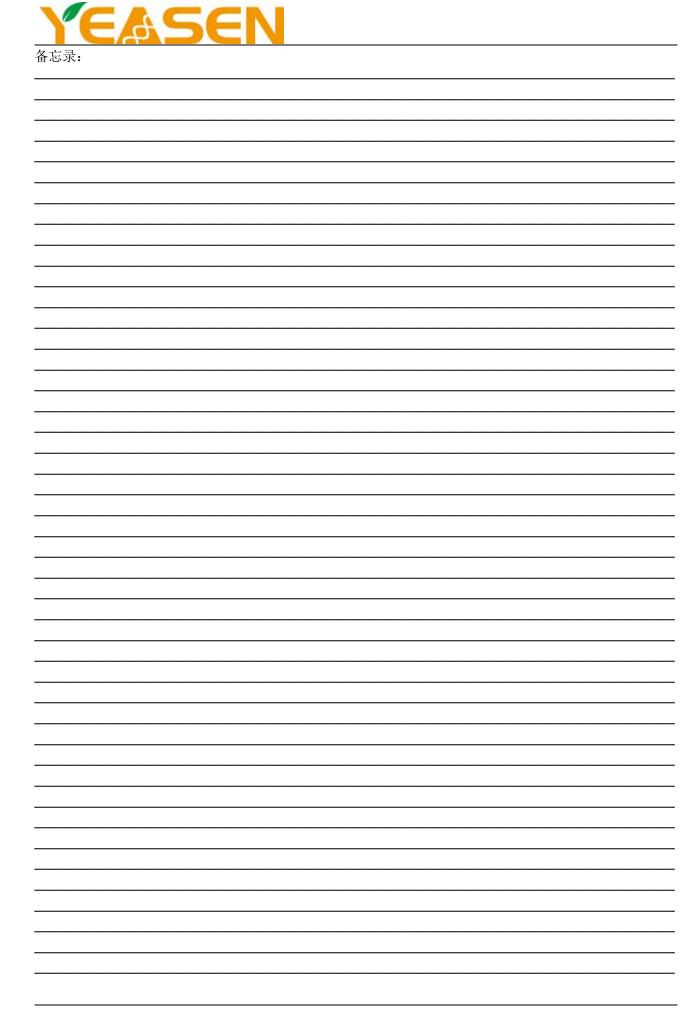



图 3 35°C不同片段化时间峰图

www.yeasen.com Page 8 of 9

www.yeasen.com Page 9 of 9

帮助客户创造价值,让世界更健康更快乐